Stimulus generalization of conditioned eyelid responses produced without cerebellar cortex: implications for plasticity in the cerebellar nuclei.

نویسندگان

  • Tatsuya Ohyama
  • William L Nores
  • Michael D Mauk
چکیده

In Pavlovian eyelid conditioning and adaptation of the vestibulo-ocular reflex, cerebellar cortex lesions fail to completely abolish previously acquired learning, indicating an additional site of plasticity in the deep cerebellar or vestibular nucleus. Three forms of plasticity are known to occur in the deep cerebellar nuclei: formation of new synapses, plasticity at existing synapses, and changes in intrinsic excitability. Only a cell-wide increase in excitability predicts that learning should generalize broadly from a training stimulus to other stimuli capable of supporting learning, whereas the alternatives predict that learning should be relatively specific to the training stimulus. Here we show that deep nucleus plasticity, as assessed by conditioned eyelid responses produced without input from the cerebellar cortex, is relatively specific to the training conditioned stimulus (CS). We trained rabbits to a tone or light CS with periorbital stimulation as the unconditioned stimulus (US), and pharmacologically disconnected the cerebellar cortex during a posttraining generalization test. The short-latency conditioned responses unmasked by this treatment showed strong decrement along the dimension of auditory frequency and did not generalize across stimulus modalities. These results cannot be explained solely by a cell-wide increase in the excitability of deep nucleus neurons, and imply that an input-specific mechanism in the deep cerebellar nucleus operates as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses.

Among the many issues surrounding the involvement of the cerebellum in motor learning, the relative roles of the cerebellar cortex and cerebellar nuclei in Pavlovian conditioning have been particularly difficult to assess. While previous studies have investigated the effects of cerebellar cortex lesions on the acquisition and retention of conditioned movements, we have examined the effects of t...

متن کامل

Latent acquisition of timed responses in cerebellar cortex.

Evidence indicates that rabbit eyelid conditioning is mediated by plasticity in the interpositus cerebellar nucleus and in cerebellar cortex. Although the relative contributions of these sites are not fully characterized, evidence suggests that plasticity in the cerebellar cortex influences conditioned response amplitude and timing, whereas plasticity in the interpositus nucleus is necessary or...

متن کامل

Cerebellar cortex lesions prevent acquisition of conditioned eyelid responses.

We have used aspiration and electrolytic lesions to investigate the contributions of cerebellar cortex to the acquisition and expression of conditioned eyelid responses. We show that lesions of the anterior lobe of rabbit cerebellar cortex disrupt the timing of previously learned conditioned eyelid responses. These short-latency responses were used as an indication that the cerebellar cortex wa...

متن کامل

Extinction of conditioned eyelid responses requires the anterior lobe of cerebellar cortex.

We test the hypothesis that the cerebellar cortex is required for the extinction of conditioned eyelid responses in rabbits trained using standard Pavlovian delay procedures. Following 10 daily training sessions during which rabbits achieved asymptotic performance, lesions of the ipsilateral hemisphere of the cerebellar cortex were made by aspiration. The target of these lesions was the anterio...

متن کامل

GABA neurotransmission in the cerebellar interposed nuclei: involvement in classically conditioned eyeblinks and neuronal activity.

The cerebellar interposed nuclei (IN) are an essential part of circuits that control classically conditioned eyeblinks in the rabbit. The function of the IN is under the control of GABAergic projections from Purkinje cells of the cerebellar cortex. The exact involvement of cerebellar cortical input into the IN during eyeblink expression is not clear. While it is known that the application of ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Learning & memory

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 2003